Intelligent Probabilistic Recurrent Fuzzy Control of Human-Machine Systems
نویسندگان
چکیده
A novel self-learning control algorithm for human-machine systems is presented. The designed controller is based on a probabilistic extension of recurrent fuzzy systems, which allows the consideration of non-deterministic information in addition to deterministic control signals. The behavior of the controller is adapted by varying the conditional probabilities of state switching, wherefore the automation-like structure of a recurrent fuzzy system is exploited. The adaptation is done by statistically evaluating the results from an objective and a subjective point of view. The developed transient probabilistic recurrent fuzzy controller (TPRFC) considers two control objectives of different time scales. First, the actual control of the mechatronical subsystem and second, the consideration (self-leaning) of disturbances and the user’s idiosyncrasy in a long term. An application of the proposed TP-RFC to a washing machine is shown by simulation.
منابع مشابه
A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin
Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...
متن کاملModern Probabilistic Machine Learning and Control Methods for Portfolio Optimization
Many recent theoretical developments in the field of machine learning and control have rapidly expanded its relevance to a wide variety of applications. In particular, a variety of portfolio optimization problems have recently been considered as a promising application domain for machine learning and control methods. In highly uncertain and stochastic environments, portfolio optimization can be...
متن کاملDesign of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS
This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...
متن کاملDesign of Multi-Stage Fuzzy PID Bundled Artificial Bee Colony for Multi-machine PSS
This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller based on Artificial Bee Colony (ABC) for damping Power System Stabilizer (PSS) in multi-machine environment. The recent studies in artificial intelligence demonstrated that the ABC optimization is strong intelligent method in complicated stability problems. Also, finding the parameters of PID controller in power ...
متن کاملIndirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011